
Physics 513, Quantum Field Theory
Homework 1

Due Tuesday, 9th September 2003

Jacob Lewis Bourjaily

Problem 1) The conservation of four-momentum implies that in particle one’s rest frame,

p0
1 = m1 = E2 + E3. (1.1)

By the invariance of p2
1, p2

2, and p2
3, it is clear that,

p2
1 = m2

1 = (p2 + p3)
2
,

= p2
2 + p2

3 + 2p2p3,

= m22 + m2
3 + 2E2E3 − ~p2~p3.

But in particle one’s rest frame, ~p2 = −~p3 and by (1.1), E3 = m1 − E2. Therefore,

m2
1 = m2

2 + m2
3 + 2m1E2 − 2

(
E2

2 − ~p2
2

)
,

= m2
3 −m2

2 + 2m1E2,

∴ E2 =
m1

2
+

m2
2 −m2

3

2m1
. (1.2)

Problem 2)

(a) laboratory frame center of mass frame
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(b) In the center of mass frame of reference, the total 4-momentum can be described by,

pcm = p′1 + p′2 = (E1 + E2;~0) ≡ (Ecm;~0).

Note that p1p2 is an invariant scalar product. Evaluated in the laboratory frame,

p1p2 = ELm2 − ~pL
~0 = ELm2.

This allows us to conclude that,

p2
cm = E2

cm = p′21 + p′22 + 2p1p2,

∴ E2
cm = m2

1 + m2
2 + 2ELm2. (2.1)

(c) Consider the four-vectors η and λ defined by,

η ≡ (p1 + p2) = (EL + m2; ~pL) η′ ≡ (E′
1 + E′

2;~0) = (Ecm;~0);

λ ≡ (p1 − p2) = (EL −m2; ~pL) λ′ ≡ (E′
1 − E′

2; 2~p ′).

By the frame-invariance of the scalar product,

ηλ = η′λ′ = E2
L −m2

2 − |~pL|2 = Ecm(E′
1 − E′

2). (2.2)
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Now consider the identity η′2λ′2 = η2λ2. Calculating these products and using the result
above,

η′2λ′2 = E2
cm

(
(E′

1 − E′
2)

2 − 4|~p′1|2
)

=
(
(EL + m2)2 − |~pL|2

) (
(EL −m2)2 − |~pL|2

)
= η2λ2,

E2
cm(E′

1 − E′
2)

2 − 4|~p′1|2E2
cm =

(
E2

L −m2
2 − |~pL|2

)2 − 4m2
2|~pL|2,

= E2
cm(E′

1 − E′
2)

2 − 4m2
2|~pL|2,

∴ |~p′1|2 =
m2

2|~pL|2
E2

cm

⇒ |~p′1| =
m2|~pL|
Ecm

. (2.3)

(d) By the conservation of four-momentum, q = p1 − p3 = p4 − p2. So,

q2 = (p4 − p2)2 = 2m2
4 − 2p2p4,

= 2m2
4 − 2E4m4,

∴ q2 = −2m4(E4 −m4). (2.4)

(e) The first part of this problem, namely that s ≡ (p1 + p2)2 = E2
cm, was demonstrated and

used in part (b) above. Let us now consider t ≡ q2,

t ≡ q2 = p2
1 + p2

3 − 2p1p3 = 2m2
1 − 2E′

1E
′
3 + 2|~p1

′||~p3
′| cos(θ′).

Here, we wrote p1p2 explicitly in the center of mass frame. Because it is an invariant, any
frame will do. Now we can use the fact that m1 = m3 and m2 = m4 to see that |~p′1| = |~p′3|
and that E′

1 = E′
3 by using part (c) from above. We will now use the notation of the

assignment where |~p′1| = p′. This quickly reduces the above equality to

q2 = 2
(
m2

1 − E′2
1 + p′2 cos(θ′)

)
.

This can be simplified in two ways. First, notice that m2
1−E′2

1 = −p′2 because E′2
1 − p′2 =

m2
1. Second we will use the trigonometric identity 1 − cos(α) = 2 sin2(α/2). Introducing

these simplifications we obtain

q2 = −4p′2 sin2 (θ′/2) . (2.5)

(f) To explore new areas of physics at very high energies, one requires the greatest center
of mass energy possible. This is because the center of mass energy is what is available to
create new matter in a collision. It is simple to show that fixed-target experiments have
significantly lower energy than comparable colliders. This is seen by solving the expression
for s in part (e) above. In a fixed target collision, we can compute (p1+p2)2 in the laboratory
frame because it is an invariant. In the laboratory frame, p1 = (EB ; ~pL) and p2 = (m2,~0).
Therefore in a fixed target experiment,

E2
cm = p2

1 + p2
2 + 2p1p2 = m2

1 + m2
2 + 2m2EB . (2.6)

Approximating this in the case of a high energy collision where EB >> m1,m2,

Ecm '
√

2m2EB . (2.7)

This does not look very cost effective. If you increased the beam energy 100 times,
there would only be 10 times more energy available for particle creation. In the center of
mass collision, however, we see that there is much higher efficiency. In such a collision,
p1 = (EB ; ~p) and p2 = (EB ;−~p). Taking the same approximation that the beam energy is
significantly higher than the rest-masses of the particles involved,

Ecm ' 2EB . (2.8)

It is clear that this would be the preferred experiment. A 100 fold increase in beam
energy would result in 100 times more energy available: the way one would expect it to be.
Despite the energy efficiency of center of mass colliders, many experiments still use fixed
target experiments. Why? There are several primary reasons. The first is that it is extraor-
dinarily difficult and usually very expensive to build a collider. If the collider is to work
with matter and antimatter like Fermilab today, LEP I or LEP II, one can use the same
(vertical) magnetic fields to accelerate the particles and antiparticles in opposite directions.
This saves money on magnets but requires solving enormous engineering obstacles. In the
LEP accelerator at CERN, for example, both the e− and e+ beams were in the same vac-
uum chamber; they had to be prevented from interacting except in very explicit locations
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along the accelerator. Imagine ultra-relativistic beams of positrons and electrons moving
oppositely in a small vacuum tube only separated by a centimeter. It clearly takes a great
deal of forethought.

In addition to engineering hurdles, there are also very large costs involved in building
these accelerators. If the collider is built to accelerate only matter, then the same magnetic
field cannot be used to accelerate opposing beams. This means that literally two entire
magnetic tracks must be built (essentially two entirely separate accelerators). This is what
is being done for the Large Hadron Collider at CERN.

Problem 3) We would like to consider the Lagrangian density,

L =
1
2
(∂µφ)2 − aφ− b

2
φ2 − α

3!
φ3 − β

4!
φ4,

under the transformation φ → φ′ = φ + c. By direct calculation,

L =
1
2
(∂µφ)2 − c

(
a +

bc

2
+

αc2

6
+

βc3

24

)

− φ

(
a + bc +

αc2

2
+

βc3

6

)

− φ2

(
b

2
+

αc

2
+

βc2

4

)

− φ3

(
α

6
+

βc

6

)

− φ4 β

4!
.

We are to show that a constant c can be chosen to remove the linear term in the Lagrangian.
Notice that the constant term in the Lagrangian is fine—we can always shift the Lagrangian
density by a constant without changing the equations of motion. Therefore, we must show that
we can find a c such that, (

a + bc +
αc2

2
+

βc3

6

)
= 0; (3.1)

Although it would be a terrible headache to solve the above cubic equation in complete gen-
erality (short of citing Cardan’s solution), we will simply note that every third order polynomial
has one real root. Analytically, one sees that for c → −∞, the expression in parenthesis will
eventually be negative and for c → ∞, the expression will eventually be positive. Therefore,
thre must be some c such that the above expression vanishes.

After a bit of algebra, one sees that one can shift L to the form,

L =
1
2
(∂µφ)2 − m2

2
φ2 − g

3!
φ3 − λ

4!
φ4, (3.2)

where,

λ = β;

g = (α− βc);

m2 =
(

b− αc +
βc2

2

)
;

c =
−4α± 2

√
4α2 − 9βb

3β
.


